Exercise 1. Find the Fourier series of the following functions over its interval.
(i) (1 point) $f(x)=\cos \left(\frac{x}{2}\right),-\pi \leq x \leq \pi$.
(ii) (1 point) $f(x)=\tan \left(\frac{x}{2}\right),-\pi \leq x \leq \pi$.
(iii) (1 point) $f(x)=e^{x},-\pi \leq x \leq \pi$.

Exercise 2. Find the Fourier series of the following functions over its interval.
(i) (1 point) $f(x)= \begin{cases}0, & -\pi \leq x<0, \\ 1, & 0 \leq x \leq \pi\end{cases}$
(ii) (1 point) $f(x)= \begin{cases}x+\pi, & -\pi \leq x<0, \\ -x+\pi, & 0 \leq x \leq \pi\end{cases}$
(iii) (1 point) $f(x)= \begin{cases}x+\pi, & -\pi \leq x<0, \\ x-\pi, & 0 \leq x \leq \pi .\end{cases}$

Exercise 3. Let $f(x)=x^{2},-\pi \leq x \leq \pi$.
(i) (1 point) Find the Fourier series of $f(x)$.
(ii) (1 point) Use the Pointwise Convergence Theorem for Fouier series to find the value of $\sum_{n=1}^{\infty} \frac{1}{n^{2}}$.

Exercise 4. Let $f(x)=x,-\pi \leq x \leq \pi$.
(i) (1 point) Find the Fourier series of $f(x)$.
(ii) (1 point) Use the Parseval's identity to find the value of $\sum_{n=1}^{\infty} \frac{1}{n^{2}}$.

