Homework IV Due Date: 30/04/2024

Exercise 1. Find the Fourier series of the following functions over its interval. (i) (1 point) $f(x) = \cos(\frac{x}{2}), -\pi \le x \le \pi$. (ii) (1 point) $f(x) = \tan(\frac{x}{2}), -\pi \le x \le \pi$. (iii) (1 point) $f(x) = e^x, -\pi \le x \le \pi$.

(i) (1 point)
$$f(x) = \begin{cases} 0, & -\pi \le x < 0, \\ 1, & 0 \le x \le \pi. \end{cases}$$

(ii) (1 point) $f(x) = \begin{cases} x + \pi, & -\pi \le x < 0, \\ -x + \pi, & 0 \le x \le \pi. \end{cases}$
(iii) (1 point) $f(x) = \begin{cases} x + \pi, & -\pi \le x < 0, \\ x - \pi, & 0 \le x \le \pi. \end{cases}$

Exercise 3. Let $f(x) = x^2$, $-\pi \le x \le \pi$. (i) (1 point) Find the Fourier series of f(x).

(i) (1 point) Use the Pointwise Convergence Theorem for Fouier series to find the value of $\sum_{n=1}^{\infty} \frac{1}{n^2}$.

Exercise 4. Let $f(x) = x, -\pi \le x \le \pi$. (i) (1 point) Find the Fourier series of f(x).

(ii) (1 point) Use the Parseval's identity to find the value of $\sum_{n=1}^{\infty} \frac{1}{n^2}$.